Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307963, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602451

RESUMO

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.

2.
ACS Appl Bio Mater ; 6(11): 4603-4612, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844275

RESUMO

In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.


Assuntos
Bioimpressão , Hidrogéis , Humanos , Matriz Extracelular , Vidro , Células MCF-7
3.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640930

RESUMO

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Assuntos
Pancreatopatias , Neoplasias Pancreáticas , Humanos , Gencitabina , Proteína-Lisina 6-Oxidase , Neoplasias Pancreáticas/tratamento farmacológico
4.
Biomater Sci ; 10(20): 5876-5887, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36149407

RESUMO

Understanding the underlying mechanisms of migration and metastasis is a key focus of cancer research. There is an urgent need to develop in vitro 3D tumor models that can mimic physiological cell-cell and cell-extracellular matrix interactions, with high reproducibility and that are suitable for high throughput (HTP) drug screening. Here, we developed a HTP 3D bioprinted migration model using a bespoke drop-on-demand bioprinting platform. This HTP platform coupled with tunable hydrogel systems enables (i) the rapid encapsulation of cancer cells within in vivo tumor mimicking matrices, (ii) in situ and real-time measurement of cell movement, (iii) detailed molecular analysis for the study of mechanisms underlying cell migration and invasion, and (iv) the identification of novel therapeutic options. This work demonstrates that this HTP 3D bioprinted cell migration platform has broad applications across quantitative cell and cancer biology as well as drug screening.


Assuntos
Bioimpressão , Neoplasias , Movimento Celular , Humanos , Hidrogéis , Impressão Tridimensional , Reprodutibilidade dos Testes
5.
Nat Commun ; 13(1): 4587, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933466

RESUMO

The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse.


Assuntos
Neoplasias da Mama , Colágeno Tipo XII/metabolismo , Metástase Neoplásica , Microambiente Tumoral , Neoplasias da Mama/patologia , Colágeno , Colágeno Tipo I , Matriz Extracelular/patologia , Feminino , Humanos , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Proteômica
6.
Adv Sci (Weinh) ; 9(21): e2103332, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611998

RESUMO

To fully investigate cellular responses to stimuli and perturbations within tissues, it is essential to replicate the complex molecular interactions within the local microenvironment of cellular niches. Here, the authors introduce Alginate-based tissue engineering (ALTEN), a biomimetic tissue platform that allows ex vivo analysis of explanted tissue biopsies. This method preserves the original characteristics of the source tissue's cellular milieu, allowing multiple and diverse cell types to be maintained over an extended period of time. As a result, ALTEN enables rapid and faithful characterization of perturbations across specific cell types within a tissue. Importantly, using single-cell genomics, this approach provides integrated cellular responses at the resolution of individual cells. ALTEN is a powerful tool for the analysis of cellular responses upon exposure to cytotoxic agents and immunomodulators. Additionally, ALTEN's scalability using automated microfluidic devices for tissue encapsulation and subsequent transport, to enable centralized high-throughput analysis of samples gathered by large-scale multicenter studies, is shown.


Assuntos
Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Alginatos , Biomimética , Comunicação Celular , Engenharia Tecidual/métodos
7.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586840

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

8.
Blood ; 138(16): 1441-1455, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34075404

RESUMO

Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.


Assuntos
Fator de Transcrição GATA2/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Redes Reguladoras de Genes , Hematopoese , Humanos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regulador Transcricional ERG/genética
9.
iScience ; 24(2): 102072, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554073

RESUMO

Inhibitor of differentiation (ID) proteins dimerize with basic HLH (bHLH) transcription factors, repressing transcription of lineage-specification genes across diverse cellular lineages. ID4 is a key regulator of mammary stem cells; however, the mechanism by which it achieves this is unclear. Here, we show that ID4 has a cell autonomous role in preventing myoepithelial differentiation of basal cells in mammary organoids and in vivo. ID4 positively regulates proliferative genes and negatively regulates genes involved in myoepithelial function. Mass spectrometry reveals that ID4 interacts with the bHLH protein HEB, which binds to E-box motifs in regulatory elements of basal developmental genes involved in extracellular matrix and the contractile cytoskeleton. We conclude that high ID4 expression in mammary basal stem cells antagonizes HEB transcriptional activity, preventing myoepithelial differentiation and allowing for appropriate tissue morphogenesis. Downregulation of ID4 during pregnancy modulates gene regulated by HEB, promoting specialization of basal cells into myoepithelial cells.

10.
Cancer Rep (Hoboken) ; 3(1): e1209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32671954

RESUMO

BACKGROUND: The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM: The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS: Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS: The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.


Assuntos
Técnicas de Cocultura/métodos , Desenvolvimento de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Animais , Fibroblastos Associados a Câncer/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Invasividade Neoplásica , Ratos
11.
Mol Cell Proteomics ; 18(7): 1410-1427, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061140

RESUMO

In prostate cancer, cancer-associated fibroblasts (CAF) exhibit contrasting biological properties to non-malignant prostate fibroblasts (NPF) and promote tumorigenesis. Resolving intercellular signaling pathways between CAF and prostate tumor epithelium may offer novel opportunities for research translation. To this end, the proteome and phosphoproteome of four pairs of patient-matched CAF and NPF were characterized to identify discriminating proteomic signatures. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a hyper reaction monitoring data-independent acquisition (HRM-DIA) workflow. Proteins that exhibited a significant increase in CAF versus NPF were enriched for the functional categories "cell adhesion" and the "extracellular matrix." The CAF phosphoproteome exhibited enhanced phosphorylation of proteins associated with the "spliceosome" and "actin binding." STRING analysis of the CAF proteome revealed a prominent interaction hub associated with collagen synthesis, modification, and signaling. It contained multiple collagens, including the fibrillar types COL1A1/2 and COL5A1; the receptor tyrosine kinase discoidin domain-containing receptor 2 (DDR2), a receptor for fibrillar collagens; and lysyl oxidase-like 2 (LOXL2), an enzyme that promotes collagen crosslinking. Increased activity and/or expression of LOXL2 and DDR2 in CAF were confirmed by enzymatic assays and Western blotting analyses. Pharmacological inhibition of CAF-derived LOXL2 perturbed extracellular matrix (ECM) organization and decreased CAF migration in a wound healing assay. Further, it significantly impaired the motility of co-cultured RWPE-2 prostate tumor epithelial cells. These results indicate that CAF-derived LOXL2 is an important mediator of intercellular communication within the prostate tumor microenvironment and is a potential therapeutic target.


Assuntos
Aminoácido Oxirredutases/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica , Microambiente Tumoral , Comunicação Autócrina , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Comunicação Parácrina , Fosfoproteínas/metabolismo , Fosforilação , Próstata/metabolismo , Próstata/patologia , Proteoma/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
12.
Br J Pharmacol ; 176(1): 82-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510460

RESUMO

The extracellular matrix (ECM) is a salient feature of all solid tissues within the body. This complex, acellular entity is composed of hundreds of individual molecules whose assembly, architecture and biomechanical properties are critical to controlling the behaviour and phenotype of the different cell types residing within tissues. Cells are the basic unit of life and the core building block of tissues and organs. At their simplest, they follow a set of rules, governed by their genetic code and effected through the complex protein signalling networks that these genes encode. These signalling networks assimilate and process the information received by the cell to control cellular decisions that govern cell fate. The ECM is the biggest provider of external stimuli to cells and as such is responsible for influencing intracellular signalling dynamics. In this review, we discuss the inclusion of ECM as a central regulatory signalling sub-network in computational models of cellular decision making, with a focus on its role in diseases such as cancer. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.


Assuntos
Matriz Extracelular/metabolismo , Transdução de Sinais , Animais , Humanos
13.
Nat Commun ; 9(1): 2897, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042390

RESUMO

The cellular and molecular basis of stromal cell recruitment, activation and crosstalk in carcinomas is poorly understood, limiting the development of targeted anti-stromal therapies. In mouse models of triple negative breast cancer (TNBC), Hedgehog ligand produced by neoplastic cells reprograms cancer-associated fibroblasts (CAFs) to provide a supportive niche for the acquisition of a chemo-resistant, cancer stem cell (CSC) phenotype via FGF5 expression and production of fibrillar collagen. Stromal treatment of patient-derived xenografts with smoothened inhibitors (SMOi) downregulates CSC markers expression and sensitizes tumors to docetaxel, leading to markedly improved survival and reduced metastatic burden. In the phase I clinical trial EDALINE, 3 of 12 patients with metastatic TNBC derived clinical benefit from combination therapy with the SMOi Sonidegib and docetaxel chemotherapy, with one patient experiencing a complete response. These studies identify Hedgehog signaling to CAFs as a novel mediator of CSC plasticity and an exciting new therapeutic target in TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Anilidas/administração & dosagem , Animais , Compostos de Bifenilo/administração & dosagem , Linhagem Celular Tumoral , Docetaxel/administração & dosagem , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Piridinas/administração & dosagem , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cell Adh Migr ; 12(6): 529-537, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29168660

RESUMO

The extracellular matrix (ECM) is a master regulator of cellular phenotype and behaviour. It plays a crucial role in both normal tissue homeostasis and complex diseases such as cancer. The interplay between the intrinsic factors of cancer cells themselves, including their genotype and signalling networks; and the extrinsic factors of the tumour stroma, such as the ECM and ECM remodelling; together determine the fate and behaviour of cancer cells. As a consequence, tumour progression, metastatic spread and response to therapy are ultimately controlled by ECM-driven fine-tuning of intracellular kinase signalling. The ability to target and uncouple this interaction presents an emerging and promising potential in the treatment of cancer.


Assuntos
Matriz Extracelular/patologia , Metástase Neoplásica/patologia , Neoplasias/patologia , Transdução de Sinais/fisiologia , Matriz Extracelular/metabolismo , Homeostase/fisiologia , Humanos , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...